Unwinding of double-stranded DNA helix by dehydration.
نویسندگان
چکیده
Conformation changes of the double-stranded DNA helix in response to dehydration were investigated by monitoring, by agarose gel electrophoresis, the linking number of covalently closed circular DNA generated by ligation of linear DNA in the presence of different organic solvents or different temperatures. It was found that: (i) The DNA helix unwinds upon addition of certain organic solvents or elevation of temperature. (ii) The conformational change observed under the experimental conditions is a continuous process in response to the organic solvent concentration. (iii) The delta H of unwinding one linking of the DNA helix is constant at approximately 12.2 +/- 0.4 kcal/mol (1 kcal = 4.184 kJ); the corresponding delta S and d(delta S)/dn are 2nkR and 2kR, in which n is the relative equivalent linking number (referred to the state of delta S = 0 for unwinding) of the DNA, R is the gas constant, and k is equal to 1117/number of base pairs. The delta H, delta S, and d(delta S)/dn for unwinding i linkings are i X 12.2 kcal/mol, 2inkR, and 2ikR, respectively. (iv) d(delta S)/dn, like k, is inversely proportional to the number of base pairs in DNA. (v) Double-stranded DNAs of different chain lengths have average delta S = 35 cal/mol.K for unwinding one linking under the experimental conditions; this corresponds to 127 +/- 14 base pairs per "relative linking."
منابع مشابه
A sequence-independent, four-stranded, double Watson--Crick DNA helix that could solve the unwinding problem of double helices.
A four-stranded DNA helix is described that consists of two Watson-Crick double helices wound about the same axis, with no restriction on sequence. Its significance is that it permits a simple topological solution to the problem of unwinding a double helix to separate its strands. If a stretch of Watson-Crick double helix is supercoiled on itself as many times as it has helical turns it has no ...
متن کاملTorsional regulation of hRPA-induced unwinding of double-stranded DNA
All cellular single-stranded (ss) DNA is rapidly bound and stabilized by single stranded DNA-binding proteins (SSBs). Replication protein A, the main eukaryotic SSB, is able to unwind double-stranded (ds) DNA by binding and stabilizing transiently forming bubbles of ssDNA. Here, we study the dynamics of human RPA (hRPA) activity on topologically constrained dsDNA with single-molecule magnetic t...
متن کاملCharacterization of an unusual bipolar helicase encoded by bacteriophage T5
Bacteriophage T5 has a 120 kb double-stranded linear DNA genome encoding most of the genes required for its own replication. This lytic bacteriophage has a burst size of ∼500 new phage particles per infected cell, demonstrating that it is able to turn each infected bacterium into a highly efficient DNA manufacturing machine. To begin to understand DNA replication in this prodigious bacteriophag...
متن کاملProtein HMG1 is different from a DNA helix unwinding protein in calf thymus.
A number of criteria were used--chromatography on columns with single-stranded and double-stranded DNA, electrophoresis, peptide analysis, immunological tests and thermal denaturation of DNA--to show that protein (high mobility group) HMG1 and an unwinding protein from calf thymus are two distinct, unrelated proteins. While both proteins are thought to be related to DNA replication this might i...
متن کاملThe DbpA catalytic core unwinds double-helix substrates by directly loading on them.
DbpA is a DEAD-box RNA helicase implicated in the assembly of the large ribosomal subunit. Similar to all the members of the DEAD-box family, the DbpA protein has two N-terminal RecA-like domains, which perform the RNA unwinding. However, unlike other members of this family, the DbpA protein also possesses a structured C-terminal RNA-binding domain that mediates specific tethering of DbpA to ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 78 5 شماره
صفحات -
تاریخ انتشار 1981